`log x`

Text Solution

Verified by Experts

Let `y="log"x`
`implies(dy)/(dx)=(d)/(dx)"log" x=(1)/(x)`
`implies (d^(2)y)/(dx^(2))=(d)/(dx)((1)/(x))=-(1)/(x^(2))`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.6|11 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

FInd the square of the sum of the roots of the equation log_3x.log_4x.log_5x=log_3x.log_4x+ log_4x.log_5x +log_5x.log_3x

Find the square of the sum of the roots of the equation log_3x*log_4x*log_5x=log_3x*log_4x+log_4x*log_5x+log_3x*log_5x

If (log|x|+1)/([2log|x|-3][log|x|-2])=alpha/(2log|x|-3)+beta/(log|x|-2), then alpha^2-beta^2=

if ((ln x)^(2)-3ln x+3)/(ln x-1)<1 then x belongs to

Solve y=(ln x)^((ln x)^((ln x))cdots^(oo))

The area bounded by the curves y=ln x,y=ln|x|,y=|ln x| and y=|ln||x| is

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Prove that log_(ab)(x)=((log_(a)(x))(log_(b)(x)))/(log_(a)(x)+log_(b)(x))

Find the square of the sum of the roots of the equation log_(3)x*log_(4)x*log_(5)x=log_(3)x*log_(4)x+log_(5)x*log_(3)x