Home
Class 12
MATHS
e^(6x)"cos"3x...

`e^(6x)"cos"3x`

Text Solution

AI Generated Solution

To find the second order derivative of the function \( y = e^{6x} \cos(3x) \), we will follow these steps: ### Step 1: Differentiate the function to find the first derivative \( \frac{dy}{dx} \) We will use the product rule for differentiation, which states that if \( y = u \cdot v \), then \( \frac{dy}{dx} = u'v + uv' \). Let: - \( u = e^{6x} \) and \( v = \cos(3x) \) ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.6|11 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find second order derivative of e^(6x)cos3x

Find the second order derivatives of the functions given.e^(6x)cos3x

Find the second derivatives of the following functions : e^(6x)cos3x

Find derivative of e^(6x)cos3x w.r.t.to x

e^(3x)cos 2x

Evaluate the following limit: (lim)_(x->0)(cos(x e^x)-"cos"(x e^(-x)))/(x^3)

int e^(-3x)cos^(3)xdx

Evaluate: int e^(2x)cos(3x+4)dx

int(e^(x)cos3x-4^(x)tan3x)/(4^(x)cos3x)dx=