Home
Class 12
MATHS
If y=cos^(-1)x , find (d^2y)/(dx^2) in t...

If `y=cos^(-1)x` , find `(d^2y)/(dx^2)` in terms of `y` alone.

Text Solution

Verified by Experts

`y="cos"^(-1)x impliesx=cos y`
`implies(dy)/(dx)= -sin y`
`implies(dy)/(dx)= -(1)/("sin"y)= -"cosec " y`
`implies (d^(2)y)/(dx^(2))=(d)/(dx)(-"cosec " y)`
`="cosec "y" cot "y*(dy)/(dx)`
`="cosec "y" cot"y(-"cosec "y)`
`= -"cosec"^(2)y" cot "y`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.6|11 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

"If "y=cos^(1)x, "find "(d^(2)y)/(dx^(2)) in terms of y alone.

If y=cos^(-1)x, find (d^(2)y)/(dx^(2)) in terms of y alone.

If y=cos^(-1)x, find (d^(2))/(dx^(2)) in terms of y alone

If quad y=cos^(-1)x Find quad (d^(2)y)/(dx^(2)) in terms of y alone.

If y=tan^(-1)x, find (d^(2)y)/(dx^(2)) in terms of y alone.

If y=tan^(-1)x find (d^(2)y)/(dx^(2)) in terms of y alone.

if y=tan^(-1)x, find (d^(2)y)/(dx^(2))

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y=log(sin x), find (d^(2)y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))