Home
Class 12
MATHS
If y=(tan^(-1)x)^2, show that (x^2+1)^2y...

If `y=(tan^(-1)x)^2`, show that `(x^2+1)^2y_2+2x(x^2+1)y_1=2`

Text Solution

Verified by Experts

`y= (tan^(-1)x)^(2)`
`=(dy)/(dx)=2tan^(-1)x*(1)/(1+x^(2))`
`implies (1+x^(2))(dy)/(dx)=2tan^(-1)x`
Again, differentiate both sides w.r.t. x
`(1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=(2)/(1+x^(2))`
`implies(1+x^(2))^(2)(d^(2)y)/(dx^(2))+2x(1+x^(2))(dy)/(dx)=2`
`implies(1+x^(2))^(2)(d^(2)y)/(dx^(2))+2x(1+x^(2))(dy)/(dx)-2=0 " "`Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.6|11 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=(tan^(-1)x)^(2) show that (x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2

If log y=tan^(-1)x, show that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=(tan^(-1)x^(2)), show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=2

If y=(tan^(-1)x)^(2), then prove that (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)=2

If y=e^(tan^(-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y = (tan^(-1))^(2) , show that (1+x^(2))(d^(2)y)/(dx^(2)) + 2x(1+x^(2))(dy)/(dx) - 2 = 0

If y=e^(tan^^)((-1)x), prove that (1+x^(2))y_(2)+(2x-1)y_(1)=0

If y=e^(2tan^(-1)x) , the show that : (1+x^(2))^(2)(d^(2)y)/(dx^(2))+2x(1+x^(2))dy/dx=4y .

If y=tan^(-1)x, show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=(cot^(-1)x)^(2), prove that y_(2)(x^(2)+1)^(2)+2x(x^(2)+1)y_(1)=2