Home
Class 12
MATHS
Using mathematical induction prove that ...

Using mathematical induction prove that `d/(dx)(x^n)=n x^(n-1)` for all positive integers n.

Text Solution

Verified by Experts

Let `P(n) : (d)/(dx)(x^(n))= n*x^(n-1)`
For `n=1`
`P(1) :(d)/(dx)(x)= 1*x^(1-1)=1`
which is true.
` :. `P(n) is true for `n=1`
Let P(n) be true for `n=k.`
` :. P(k) :(d)/(dx)(x^(k))= k*x^(k-1) " " `...(1)
For `n=k+1`
` P(k+1) :(d)/(dx)(x^(k+1))= (d)/(dx)(x^(k)*x)`
`=x*(d)/(dx)(x^(k))+x^(k)*(d)/(dx)(x)`
`=x*k*x^(k-1)+x^(k)*1`
`=kx^(k)+x^(k)=(k+1)x^(k)` From equation (1)
`implies P(n)` is also true for `n=k+1.`
Hence, from the principle of mathematical induction, P(n) is true for all natural numbers n.
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.8|6 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that (d)/(dx)(x^(n))=nx^(n-1) for all positive integers n.

Using mathematical induction prove that : (d)/(dx)(x^(n))=nx^(n-1)f or backslash all n in N

If A is a square matrix,using mathematical induction prove that (A^(T))^(n)=(A^(n))^(T) for all n in N

If A is a square matrix,using mathematical induction prove that (A^(T))^(n)=(A^(n))^(T) for all n in N.

Using mathematical induction prove that n^(2)-n+41 is prime.

If A=[1101], prove that A^(n)=[1n01] for all positive integers n.

If A=[111011001] ,then use the principle of mathematical induction to show that A^(n)=[1nn(n+1)/201n001] for every positive integer n.

Using the principle of mathematical induction, prove that n<2^(n) for all n in N

Using the principle of mathematical induction prove that (1+x)^(n)>=(1+nx) for all n in N, where x>-1

Prove,by mathematical induction,that x^(n)+y^(n) is divisible by x+y for any positive odd integer n.

NAGEEN PRAKASHAN-Continuity and Differentiability-Miscellaneous Exercise
  1. sin^(-1)(xsqrt(x)),0 le x le 1

    Text Solution

    |

  2. Differentiate w.r.t. x the function (cos^(-1)x/2)/(sqrt(2x+7)),-2<x<2

    Text Solution

    |

  3. cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/...

    Text Solution

    |

  4. (log x)^(log x),x gt1

    Text Solution

    |

  5. Differentiate w.r.t. x the function cos" "(a" "cos" "x" "+" "b" "s in"...

    Text Solution

    |

  6. (sinx-cosx)^((sinx-cosx)),(pi)/(4) ltx lt (3pi)/(4)

    Text Solution

    |

  7. Differentiate w.r.t. x the function x^x+x^a+a^x+a^a ,for some fixed a...

    Text Solution

    |

  8. Differentiate x^x^(2-3)+(x-3)^x^2 with respect to x :

    Text Solution

    |

  9. Find (dy)/(dx),if y=12(1-cost), x=10(t-sint),-pi/2<t<pi/2

    Text Solution

    |

  10. If y=sin^(- 1)x+sin^(- 1)sqrt(1-x^2) then find (dy)/(dx)

    Text Solution

    |

  11. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  12. If (x-a)^2+(y-b)^2=c^2, for some c > 0, prove that ([1+((dy)/(dx))^2]^...

    Text Solution

    |

  13. If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y...

    Text Solution

    |

  14. If x=a(cost+tsint) and y=a(sint-tcost), find (d^(2)y)/(dx^(2)).

    Text Solution

    |

  15. If f(x)=|x|^3 , show that f"(x) exists for all real x and find it.

    Text Solution

    |

  16. Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all...

    Text Solution

    |

  17. Using the fact that s in (A + B) = s in A cos B + cos A s in Band the ...

    Text Solution

    |

  18. Does there exist a function which is continuous everywhere but not ...

    Text Solution

    |

  19. If y=|f(x)g(x)h(x)l m n a b c|, prove that (dy)/(dx)=|fprime(x)gprime(...

    Text Solution

    |

  20. If y=e^acos^((-1)x),-1lt=x<1,s howt h a t (1-x^2)(d^2y)/(dx^2)-x(dy)/...

    Text Solution

    |