Home
Class 12
MATHS
Find the maximum and minimum values of t...

Find the maximum and minimum values of the function `f(x) = sin x + cos 2x`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = \sin x + \cos 2x \), we will follow these steps: ### Step 1: Find the derivative of the function The first step is to differentiate the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(\sin x) + \frac{d}{dx}(\cos 2x) \] Using the derivatives of sine and cosine, we have: \[ f'(x) = \cos x - 2\sin 2x \] ### Step 2: Set the derivative to zero To find the critical points, we set the derivative equal to zero: \[ \cos x - 2\sin 2x = 0 \] Using the double angle identity \( \sin 2x = 2\sin x \cos x \), we can rewrite the equation: \[ \cos x - 4\sin x \cos x = 0 \] Factoring out \( \cos x \): \[ \cos x (1 - 4\sin x) = 0 \] This gives us two cases to consider: 1. \( \cos x = 0 \) 2. \( 1 - 4\sin x = 0 \) ### Step 3: Solve for critical points **Case 1:** \( \cos x = 0 \) This occurs at: \[ x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] **Case 2:** \( 1 - 4\sin x = 0 \) Solving for \( \sin x \): \[ \sin x = \frac{1}{4} \] ### Step 4: Evaluate the function at critical points Now we will evaluate \( f(x) \) at the critical points found. 1. **For \( x = \frac{\pi}{2} \):** \[ f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + \cos\left(2 \cdot \frac{\pi}{2}\right) = 1 + \cos(\pi) = 1 - 1 = 0 \] 2. **For \( \sin x = \frac{1}{4} \):** We find \( x \) using the arcsine function: \[ x = \arcsin\left(\frac{1}{4}\right) + 2n\pi \quad \text{or} \quad x = \pi - \arcsin\left(\frac{1}{4}\right) + 2n\pi \] Now we substitute \( \sin x = \frac{1}{4} \) into \( f(x) \): Using the identity \( \cos 2x = 1 - 2\sin^2 x \): \[ \cos 2x = 1 - 2\left(\frac{1}{4}\right)^2 = 1 - 2\left(\frac{1}{16}\right) = 1 - \frac{1}{8} = \frac{7}{8} \] Thus, \[ f(x) = \frac{1}{4} + \frac{7}{8} = \frac{2}{8} + \frac{7}{8} = \frac{9}{8} \] ### Step 5: Determine maximum and minimum values From the evaluations: - At \( x = \frac{\pi}{2} \), \( f\left(\frac{\pi}{2}\right) = 0 \) - At \( x = \arcsin\left(\frac{1}{4}\right) \) or \( x = \pi - \arcsin\left(\frac{1}{4}\right) \), \( f(x) = \frac{9}{8} \) Thus, the maximum value of \( f(x) \) is \( \frac{9}{8} \) and the minimum value is \( 0 \). ### Final Answer: - Maximum value: \( \frac{9}{8} \) - Minimum value: \( 0 \)
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6g|21 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6h (multiple Choice Questions)|10 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6e|16 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x)=tan x-2x

Find the maimum and minimum values of the function f(x)= sin (sin x)

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

If x lies in first quadrant, find the maximum or minimum values of the function 4 sin x+3 cos x .

Find the maximum and minimum values of the function f(x)=(4)/(x+2)+x

Find sum of maximum and minimum values of the function f(x)=sin^(2)x+8cos x-7

Find the maximum value of the function f(x) =sin x + cos x .

Find the minimum and maximum values of the function f(x) =a cos x+b sin x(a^(2)+b^(2) gt 0)

Find the maximum or minimum value of the function (sin x)/(1+tan x)

NAGEEN PRAKASHAN-APPLICATIONS OF DERIVATIVES-Exercise 6f
  1. Find the values of x for which the following functions are maximum or ...

    Text Solution

    |

  2. Find the maximum or minimum values of the following functions: (i)x^...

    Text Solution

    |

  3. For what values of x, the function f(x) = x^(5)-5x^(4)+5x(3)-1 is maxi...

    Text Solution

    |

  4. Find the maximum and minimum values of the function f(x) = sin x + cos...

    Text Solution

    |

  5. Find the maximum and minimum values of the function f(x) = x+ sin 2x, ...

    Text Solution

    |

  6. Find the maximum and minimum values of the function f(x) = (sin x)/(1+...

    Text Solution

    |

  7. Show that s in^p\ theta\ cos^q\ theta attains a maximum, when theta...

    Text Solution

    |

  8. Find the maximum value of the function (log x)/x " when "x gt 0.

    Text Solution

    |

  9. Find the maximum value of the function x^(1//x).

    Text Solution

    |

  10. Show that the maximum value of (1/x)^x is e^(1/e)dot

    Text Solution

    |

  11. Show that the function x^(3)- 3x^(2)+3x+1 has neither a maxima nor a m...

    Text Solution

    |

  12. Show that f(x)=sinx(1+cosx) is maximum at x=pi/3 in the interval [0,\ ...

    Text Solution

    |

  13. If the function f(x) = x^(3)-24x^(2)+6kx-8 is maximum at x = 2. Then, ...

    Text Solution

    |

  14. Prove that value of the function xy(y-x)=2a^3 is minimum at x=a.

    Text Solution

    |

  15. Show that the function(-x^(2) log x) is minimum at x= 1/sqrte.

    Text Solution

    |

  16. Find the maximum value of the function x * e^(-x).

    Text Solution

    |

  17. Show that the maximum value of the function sqrt2(sin x+ cos x) is 2.

    Text Solution

    |

  18. Show that the maximum and minimum values of the function (x+1)^2/(x+3)...

    Text Solution

    |

  19. If the function y = ae^(x) + bx^(2)+3x is maximum at x = 0 and minimum...

    Text Solution

    |