Home
Class 12
MATHS
Minimum value of the function f(x)= (1/x...

Minimum value of the function `f(x)= (1/x)^(1//x)` is:

A

e

B

`1/e`

C

`e^(e)`

D

`e^(-1//e)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6i (multiple Choice Questions)|10 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6.1|18 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6g|21 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Minimum value of the function f(x)=(1+sin x)(1+cos x)AA x in R, is

If x in[-8,0] ,then the minimum value of the function f(x)=e^(x)-|x|-1 ,is

Find the minimum value of the function f(x)=(1+sinx)(1+cosx),AAx inR .

The minimum value of the function f(x)=xlogx is

The sum of the maximum and minimum values of the function f(x)=(1)/(1+(2cos x-4sin x)^(2)) is

The minimum value of the function, f(x)=x^(3//2)+x^(-3//2)-4(x+(1)/(x)). For all permissible real values of x is

The minimum value of the function f(x) = x log x is

The minimum value of the function f(x)=x^(3//2)+x^(-3//2)-4(x+1/x) for all permissible real x is

Calculate the absolute maximum and absolute minimum value of the function f(x)=(x+1)/(sqrt(x^(2)+1)), 0lexle2.