Home
Class 12
MATHS
Curve b^(2)x^(2) + a^(2)y^(2) = a^(2)b^(...

Curve `b^(2)x^(2) + a^(2)y^(2) = a^(2)b^(2) and m^(2)x^(2)- y^(2)l^(2) = l^(2)m^(2)` intersect each other at right-angle if:

A

`a^(2)+b^(2)=l^(2)+m^(2)`

B

`a^(2)-b^(2)=l^(2)-m^(2)`

C

`a^(2)-b^(2)=l^(2)+m^(2)`

D

`a^(2)+b^(2) = l^(2)-m^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6.1|18 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6.2|19 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6h (multiple Choice Questions)|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(l^(2))-(y^(2))/(m^(2))=1 cut each other orthogonally then....

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

If the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) touch each other, then

Show that the curves (x^(2))/(a^(2)+lambda_(1))=1 and (x^(2))/(a^(2)+lambda_(2))+(y^(2))/(b^(2)+lambda_(2))=1 intersect at right angles.

if two curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1&(x^(2))/(a)^(2)+(y^(2))/(b)^(2)=1 one another at right angle then

If the curves (x ^(2))/(a ^(2))+ (y^(2))/(4)= 1 and y ^(2)= 16x intersect at right angles, then:

If (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(a>b) and x^(2)-y^(2)=c^(2) cut at right angles,then: