Home
Class 12
MATHS
If f(x) = 3x^(2) + 15x+5, then the appro...

If `f(x) = 3x^(2) + 15x+5`, then the approximate value of `f(3.02)` is :

A

`47.66`

B

`57.66`

C

`67.66`

D

`77.66`

Text Solution

AI Generated Solution

The correct Answer is:
To find the approximate value of \( f(3.02) \) for the function \( f(x) = 3x^2 + 15x + 5 \), we can use the concept of derivatives. Here’s a step-by-step solution: ### Step 1: Calculate \( f(3) \) First, we need to find the value of the function at \( x = 3 \). \[ f(3) = 3(3^2) + 15(3) + 5 \] Calculating each term: \[ = 3(9) + 45 + 5 \] \[ = 27 + 45 + 5 = 77 \] ### Step 2: Calculate \( f'(x) \) Next, we find the derivative of \( f(x) \). \[ f'(x) = \frac{d}{dx}(3x^2 + 15x + 5) \] Using the power rule: \[ f'(x) = 6x + 15 \] ### Step 3: Calculate \( f'(3) \) Now, we evaluate the derivative at \( x = 3 \). \[ f'(3) = 6(3) + 15 \] Calculating: \[ = 18 + 15 = 33 \] ### Step 4: Use the linear approximation formula We can approximate \( f(3.02) \) using the formula: \[ f(x + h) \approx f(x) + h \cdot f'(x) \] Here, \( x = 3 \) and \( h = 0.02 \). Substituting the values we found: \[ f(3.02) \approx f(3) + 0.02 \cdot f'(3) \] \[ = 77 + 0.02 \cdot 33 \] ### Step 5: Calculate the final approximation Now, calculate \( 0.02 \cdot 33 \): \[ 0.02 \cdot 33 = 0.66 \] Adding this to \( f(3) \): \[ f(3.02) \approx 77 + 0.66 = 77.66 \] ### Final Answer Thus, the approximate value of \( f(3.02) \) is \( \boxed{77.66} \). ---

To find the approximate value of \( f(3.02) \) for the function \( f(x) = 3x^2 + 15x + 5 \), we can use the concept of derivatives. Here’s a step-by-step solution: ### Step 1: Calculate \( f(3) \) First, we need to find the value of the function at \( x = 3 \). \[ f(3) = 3(3^2) + 15(3) + 5 \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6.5|29 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|24 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Exercise 6.3|27 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If f(x) = 3x^(2) + 15x + 5 , then find the approximate value of f(3.02) using differentials

If f(x)=3x^2+15 x+5, then the approximate value of f" "(3. 02) is (A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66

If f(x)=3x^(2)+5x+2 , then the approximate value f(5.02) is

If f(x) = 2x^(2)+5x+2 , then find the approximate value of f(2.01) .

If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .

Find the approximate value of f(3.02), where f(x)=3x^(2)+5x+3

Find the approximate value of f(3.02), where f(x)=3x^(2)+5x+3

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(3.02) , where f(x)=3x^(2)+15x+5.

Find the approximate value of : f(3.02)," where "f(x)=3x^(2)+15x+3