Home
Class 11
MATHS
If n. sin(A+2B)=sinA, then prove that: t...

If n. `sin(A+2B)=sinA`, then prove that: `tan(A+B)=(1+n)/(1-n).tanB`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan B=(n sin A*cos A)/(1-n sin^(2)A), then prove that tan(A-B)=(1-n)tan A

If tanB=(nsinAcosA)/(1-nsin^(2)A) , prove that: tan(A-B)=(1-n)tanA

If sinA=sinBa n dcosA=cosB , then prove that sin(A-B)/2=0

If sinA=sinBa n dcosA=cosB , then prove that sin(A-B)/2=0

If cosA=kcos(A-2B) , prove that: tan(A-B)tanB= (1-k)/(1+k)

If cosA=kcos(A-2B) , prove that: tan(A-B)tanB= (1-k)/(1+k)

Prove that : tan (A + B) = (tan A +tanB)/(1-tan A tanB) .

If tan(A+B)=ntan(A_B) then prove that (n+1)/(n-1)=(sin2A)/(sin2B)

if tan beta=(n sin alpha cos beta)/(1-n sin^(2)alpha) then prove that tan(alpha-beta)=(1-n)tan alpha

if tan beta=(n sin alpha cos beta)/(1-n sin^(2)alpha) then prove that tan(alpha-beta)=(1-n)tan alpha