Home
Class 12
MATHS
S(10) = cos'(pi)/(180) + cos'(3pi)/(180)...

`S_(10) = cos'(pi)/(180) + cos'(3pi)/(180) + "….." cos '(19pi)/(180)`

A

`(sin'pi/9cos'pi/18)/(sin'pi/90)`

B

`(sin'pi/18cos'pi/18)/(sin(pi/180))`

C

`(sin'pi/18cos'pi/9)/(sin(pi/180))`

D

`(cos'pi/18cos'pi/9)/(sin(pi/180))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( S_{10} = \cos\left(\frac{\pi}{180}\right) + \cos\left(\frac{3\pi}{180}\right) + \cos\left(\frac{5\pi}{180}\right) + \ldots + \cos\left(\frac{19\pi}{180}\right) \), we can follow these steps: ### Step 1: Identify the series The series consists of cosine terms where the angles are in an arithmetic progression (AP). The first term \( a = \frac{\pi}{180} \) and the common difference \( d = \frac{2\pi}{180} = \frac{\pi}{90} \). ### Step 2: Determine the number of terms The series runs from \( \frac{\pi}{180} \) to \( \frac{19\pi}{180} \). The number of terms \( n \) can be calculated as follows: - The general term of the AP can be expressed as: \[ a_n = a + (n-1)d \] Setting \( a_n = \frac{19\pi}{180} \): \[ \frac{\pi}{180} + (n-1)\frac{\pi}{90} = \frac{19\pi}{180} \] Simplifying this gives: \[ (n-1)\frac{\pi}{90} = \frac{19\pi}{180} - \frac{\pi}{180} = \frac{18\pi}{180} = \frac{\pi}{10} \] Thus, \[ n-1 = \frac{\pi/10}{\pi/90} = 9 \implies n = 10 \] ### Step 3: Use the formula for the sum of cosines in AP The formula for the sum of cosines where the angles are in AP is: \[ S_n = \frac{\sin\left(\frac{nd}{2}\right) \cos\left(a + \frac{(n-1)d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] Substituting the values: - \( n = 10 \) - \( a = \frac{\pi}{180} \) - \( d = \frac{\pi}{90} \) ### Step 4: Calculate each component 1. Calculate \( \frac{nd}{2} \): \[ \frac{nd}{2} = \frac{10 \cdot \frac{\pi}{90}}{2} = \frac{10\pi}{180} = \frac{\pi}{18} \] 2. Calculate \( a + \frac{(n-1)d}{2} \): \[ a + \frac{(n-1)d}{2} = \frac{\pi}{180} + \frac{9 \cdot \frac{\pi}{90}}{2} = \frac{\pi}{180} + \frac{9\pi}{180} = \frac{10\pi}{180} = \frac{\pi}{18} \] 3. Calculate \( \frac{d}{2} \): \[ \frac{d}{2} = \frac{\frac{\pi}{90}}{2} = \frac{\pi}{180} \] ### Step 5: Substitute into the formula Now substituting these values into the formula: \[ S_{10} = \frac{\sin\left(\frac{\pi}{18}\right) \cos\left(\frac{\pi}{18}\right)}{\sin\left(\frac{\pi}{180}\right)} \] ### Step 6: Simplify the expression Using the identity \( \sin(2x) = 2 \sin(x) \cos(x) \): \[ S_{10} = \frac{1}{2} \cdot \frac{\sin\left(\frac{\pi}{9}\right)}{\sin\left(\frac{\pi}{180}\right)} \] ### Final Result Thus, the final expression for \( S_{10} \) is: \[ S_{10} = \frac{1}{2} \cdot \frac{\sin\left(\frac{\pi}{9}\right)}{\sin\left(\frac{\pi}{180}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • EQUATIONS

    RESONANCE|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |7 Videos

Similar Questions

Explore conceptually related problems

cos ((pi) / (11)) cos ((2 pi) / (11)) cos ((3 pi) / (11)) ... cos ((11 pi) / (11)) =

(cos2^(3))(pi)/(10)(cos2^(4))(pi)/(10)(cos2^(5))(pi)/(10)......*(cos2^(10))(pi)/(10) is equal to (p)/(29). (in lowest form) p,q in N then

If P = cos ((pi) / (19)) + cos ((3 pi) / (19)) + cos ((5 pi) / (19)) + ... + cos ((17 pi) / ( 19)) and Q = cos ((2 pi) / (21)) + cos ((4 pi) / (21)) + ... cos ((20 pi) / (21)) then find PQ

The sum cos ((pi) / (9)) + cos ((2 pi) / (9)) + cos ((3 pi) / (9)) + ... + cos ((17 pi) / (9 )) =

(cos pi) / (14) + (cos (3 pi)) / (14) + (cos (5 pi)) / (14) = k (cot pi) / (14)

The value of cos((pi)/(10))cos((2 pi)/(10))cos((4 pi)/(10))cos((8 pi)/(10))cos((16 pi)/(10))

If m and M be the minimum and maximum value of f(x)=cos((pi)/(10)+x)-cos((pi)/(10)-x)-cos((3 pi)/(10)+x)+cos((3 pi)/(10)-x) then

cos ((pi) / (8)) cos ((3 pi) / (8)) cos ((5 pi) / (8)) cos ((7 pi) / (8)) =

RESONANCE-DPP-QUESTION
  1. Number of roots of (x^(2)+5x+7)(-x^(2)+3x-4) = 0

    Text Solution

    |

  2. If the roots of Quadratic i^(2)x^(2)+5ix-6 are a+ib and c +id (a,b,c,d...

    Text Solution

    |

  3. S(10) = cos'(pi)/(180) + cos'(3pi)/(180) + "….." cos '(19pi)/(180)

    Text Solution

    |

  4. Find the sum of the series 31^(3) + 32^(3) + "……." 50^(3)

    Text Solution

    |

  5. Find maximum value of a^(2)b^(3) if a+b=2. When a & b are positive num...

    Text Solution

    |

  6. Find the roots of the equation x^(2) + ix - 1 - i = 0

    Text Solution

    |

  7. solve ||x-2|-1|lt 2

    Text Solution

    |

  8. If x^(3) + 2x-3 = 0 then then number of real values of 'x' satisfying ...

    Text Solution

    |

  9. solve for x |x+1| + |x-2| + |x-5| = 4

    Text Solution

    |

  10. If |a-b| gt ||a|-|b|| then

    Text Solution

    |

  11. The inequation sqrt(f(x)) gt g(x), is equivalent to the

    Text Solution

    |

  12. The value of sintheta + sin3theta +sin5theta + "….."+ sin(2n-1)theta i...

    Text Solution

    |

  13. If a,b,c, in R and equations ax^(2) + bx + c =0 and x^(2) + 2x + 9 = 0...

    Text Solution

    |

  14. Prove that cos theta* cos 2theta* cos2^(2)theta * cos2^(3)theta x... ...

    Text Solution

    |

  15. The graph of y = f|x| is given below The graph y = |f(x)|

    Text Solution

    |

  16. ((cos15^(@)-sin15^(@)+1)/(cos15^(@)+sin15^(@)+1))((1+sin15^(@))/(cos15...

    Text Solution

    |

  17. Which of the following is true :

    Text Solution

    |

  18. tanA +tanB + tanC = tanA tanB tanC if

    Text Solution

    |

  19. Which of the followintg is true if A+B+C = pi

    Text Solution

    |

  20. If a1x^2 + b1 x + c1 = 0 and a2x^2 + b2 x + c2 = 0 has a common root...

    Text Solution

    |