Home
Class 12
MATHS
STATEMENT - 1 : If n is even, .^(2n)C(1)...

STATEMENT - 1 : If n is even, `.^(2n)C_(1)+.^(2n)C_(3)+.^(2n)C_(5)+"….."+.^(2n)C_(n-1) = 2^(2n-1)`.
STATEMENT - 2 : `.^(2n)C_(1) + .^(2n)C_(3)+ .^(2n)C_(5) + "……"+ .^(2n)C_(2n-1) = 2^(2n-1)`

A

STATEMENT - 1 is true, STATEMENT - 2 is true and STATEMENT - 2 is correct explanation for STATEMENT - 1.

B

STATEMENT - 1 is true, STATEMENT - 2 is true and STATEMENT - 2 is not correct explanation for STATEMENT - 1.

C

STATEMENT-1 is true, STATEMENT-2 is false

D

STATEMENT-1 is false, STATEMENT-2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze both statements and verify their correctness. ### Step 1: Understanding Statement 1 Statement 1 claims that if \( n \) is even, then: \[ \binom{2n}{1} + \binom{2n}{3} + \binom{2n}{5} + \ldots + \binom{2n}{n-1} = 2^{2n-1} \] ### Step 2: Understanding Statement 2 Statement 2 claims: \[ \binom{2n}{1} + \binom{2n}{3} + \binom{2n}{5} + \ldots + \binom{2n}{2n-1} = 2^{2n-1} \] ### Step 3: Using Binomial Theorem We will use the binomial theorem to analyze both statements. The binomial theorem states: \[ (1 + x)^{2n} = \sum_{k=0}^{2n} \binom{2n}{k} x^k \] ### Step 4: Evaluating for \( x = 1 \) Substituting \( x = 1 \): \[ (1 + 1)^{2n} = 2^{2n} = \sum_{k=0}^{2n} \binom{2n}{k} \] ### Step 5: Evaluating for \( x = -1 \) Now substituting \( x = -1 \): \[ (1 - 1)^{2n} = 0 = \sum_{k=0}^{2n} \binom{2n}{k} (-1)^k \] This can be separated into even and odd terms: \[ \sum_{k \text{ even}} \binom{2n}{k} - \sum_{k \text{ odd}} \binom{2n}{k} = 0 \] This implies: \[ \sum_{k \text{ even}} \binom{2n}{k} = \sum_{k \text{ odd}} \binom{2n}{k} \] ### Step 6: Relating Even and Odd Sums Since the sum of all coefficients is \( 2^{2n} \), we can write: \[ 2 \sum_{k \text{ odd}} \binom{2n}{k} = 2^{2n} \] Thus, \[ \sum_{k \text{ odd}} \binom{2n}{k} = 2^{2n-1} \] ### Step 7: Analyzing the Sums The sum of the odd-indexed binomial coefficients includes all odd indices up to \( 2n-1 \): \[ \sum_{k=1, k \text{ odd}}^{2n} \binom{2n}{k} = \binom{2n}{1} + \binom{2n}{3} + \ldots + \binom{2n}{2n-1} = 2^{2n-1} \] This confirms Statement 2. ### Step 8: Verifying Statement 1 For Statement 1, we note: \[ \binom{2n}{1} + \binom{2n}{3} + \ldots + \binom{2n}{n-1} \] This sum only includes odd-indexed terms up to \( n-1 \), which is less than \( 2n-1 \). Thus, it does not equal \( 2^{2n-1} \). ### Conclusion - **Statement 1** is **false** because it does not account for all odd terms up to \( 2n-1 \). - **Statement 2** is **true** as it correctly sums all odd-indexed terms. ### Final Answer - Statement 1: False - Statement 2: True
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • EQUATIONS

    RESONANCE|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |7 Videos

Similar Questions

Explore conceptually related problems

STATEMENT - 1 : If .^(2n+1)C_(1) + .^(2n+1)C_(2)+………+ .^(2n+1)C_(n)= 4095 , then n = 7 STATEMENT - 2 : .^(n)C_(r )= .^(n)C_(n-r) where n epsilon N, r epsilon W and n ge r

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

Find 'n', if ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P.

If (.^(2n)C_1)^2+ 2.(.^(2n)C_2)^2+3.(.^(2n)C_3)^2+...+2n. (.^(2n)C_(2n))^2 = 18 .^(4n-1)C_(2n-1)

If ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P., find n.

RESONANCE-DPP-QUESTION
  1. number of distint terms in (x+a)^100+(x-a)^100

    Text Solution

    |

  2. The value of m , for which the coefficients of the (2m+1) th terms in ...

    Text Solution

    |

  3. STATEMENT - 1 : If n is even, .^(2n)C(1)+.^(2n)C(3)+.^(2n)C(5)+"….."+....

    Text Solution

    |

  4. For some natural number N, the number of positive integral 'x' satis...

    Text Solution

    |

  5. Find the sum of the last 30 coefficients in the expansion of (1+x)^(59...

    Text Solution

    |

  6. Coefficient of x^(48) in sum(r=0)^(50)""^(50)C(r).(x-2)^(x).3^(50-r) i...

    Text Solution

    |

  7. Solve the following equations : (i) |x-2| = sqrt(x-4) , (ii) (|x-2|)...

    Text Solution

    |

  8. |x^(2)-4x+4|ge 1

    Text Solution

    |

  9. Solve the following inequation (i) (3)/(x-2) lt 1 , (ii) (2x-1)/(x^(...

    Text Solution

    |

  10. If sum(i=1)^(7) i^(2)x(i) = 1 and sum(i=1)^(7)(i+1)^(2) x(i) = 12 and ...

    Text Solution

    |

  11. Circles with centres P,Q& S are touching each other externally as show...

    Text Solution

    |

  12. The value of (P-Q) is equal to

    Text Solution

    |

  13. The value of (P-R) is equal to

    Text Solution

    |

  14. The value of (Q+R) is equal to

    Text Solution

    |

  15. The sum sum(r=0)^(n) (r+1)C(r)^(2) is equal to :

    Text Solution

    |

  16. In the binomial expansion of (a-b)^nngeq5, the sum of the 5th and 6th ...

    Text Solution

    |

  17. Let P=sum(r=1)^50 (^(50+r)Cr(2r-1))/(^50Cr(50+r)),Q=sum(r=0)^50(^50Cr)...

    Text Solution

    |

  18. Let P = sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = su...

    Text Solution

    |

  19. Let P=sum(r=1)^50 (^(50+r)Cr(2r-1))/(^50Cr(50+r)),Q=sum(r=0)^50(^50Cr)...

    Text Solution

    |

  20. If sum(r=0)^(n) (-1)^(r ).""^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(2r))+(7^(...

    Text Solution

    |