Home
Class 12
MATHS
Find the number of solution of the equat...

Find the number of solution of the equation `(2sintheta-sin3theta)/(1+costheta)+(3costheta+cos3theta)/(1-sintheta)=4sqrt(2)cos(theta+(pi)/(4))`
in the interval `(-10pi,8pi].`

Text Solution

Verified by Experts

`(3sintheta-(3sintheta-4sin^(3)theta))/(1+costheta)+(3costheta+(4cos^(3)theta-3costheta))/(1-sintheta)=4sqrt(2)cos(theta+(pi)/(4))`
`implies4sintheta(1-costheta)-4costheta(1+sintheta)=4sqrt(2)cos(theta+(pi)/(4))`
`implies4sqrt(2)sin(theta+(pi)/(4))=4sqrt(2)cos(theta+(pi)/(4))impliestan(theta+(pi)/(4))=1impliestheta+(pi)/(4)=npi+(pi)/(4),nin"I"`
But `1+costhetane0`
`:." "theta=2npiAAnin"I"`
Hence number of solutiohn are `9" i.e. "theta=-8pi,-6pi,-4pi,-2pi,0,2pi,4pi,6pi,8pi.`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise PHYSICS SECTION-1 Part-A (Single Correct choice Type )|5 Videos
  • TEST PAPERS

    BANSAL|Exercise PHYSICS SECTION-1 Part-A (Comprehension type )|3 Videos
  • TEST PAPERS

    BANSAL|Exercise Chemistry, SECTION-2 (PART-C)|10 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

The solution of (3sin theta-sin3 theta)/(1+cos theta)+(3cos theta+cos3 theta)/(1-sin theta)=4sqrt(2)cos(theta+(pi)/(4))

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

The number of solution of the equation sin theta cos theta cos 2 theta .cos 4theta =1/2 in the interval [0,pi]

The number of solutions of the equation sin^(5)theta + 1/(sintheta) = 1/(costheta) +cos^(5)theta where theta int (0, pi/2) , is

(sin^(3)theta+cos^(3)theta)/(sintheta+costheta)+(sin^(3)theta-cos^(3)theta)/(sintheta-costheta)=

If costheta +sin theta= sqrt(2)cos theta , then prove that costheta-sintheta =sqrt(2)sin theta

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

If cos theta-4sintheta=1, the sintheta+4costheta=