Home
Class 12
MATHS
If f:R to R satisfies f(x+y)=f(x)+f(y),...

If `f:R to R ` satisfies f(x+y)=f(x)+f(y), for all x, y `in` R and f(1)=7, then `sum_(r=1)^(n)f( r)` is

A

`(7n)/(2) `

B

`(7(n+1))/(2)`

C

`7n(n+1) `

D

`(7n(n+1))/(2)`

Text Solution

AI Generated Solution

To solve the problem, we start with the functional equation given: 1. **Functional Equation**: We have \( f(x+y) = f(x) + f(y) \) for all \( x, y \in \mathbb{R} \). 2. **Finding \( f(2) \)**: We know \( f(1) = 7 \). To find \( f(2) \), we can use the functional equation by letting \( x = 1 \) and \( y = 1 \): \[ f(2) = f(1 + 1) = f(1) + f(1) = 7 + 7 = 14. \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 Part-A [ comprehension type ]|3 Videos
  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 Part-A [Reasoning type ]|2 Videos
  • TEST PAPERS

    BANSAL|Exercise CHEMISTRY SECTION-2 Part-B ( Matrix type )|2 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

If f:R rarr R satisfies f(x+y)=f(x)+f(y), for all x,y in R and f(1)=2 then sum_(r=1)^(7)f(1)

If f:RtoR satisfies f(x+y)=f(x)+f(y), for all real x,y and f(1)=m. then: sum_(r=1)^(n)f(r)=

If f:R rarr R satisfies,f(x+y)=f(x)+f(y),AA x,y in R and f(1)=4,thensum_(r=1)^(n)f(r)

Let f be a function satisfying f(x+y)=f(x) *f(y) for all x,y, in R. If f (1) =3 then sum_(r=1)^(n) f (r) is equal to

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=