Home
Class 12
MATHS
Find the sum of all possible values of x...

Find the sum of all possible values of x satisfying arc `cos((2)/(pi) arc cos x)=arc sin((2)/(pi) arc sinx)`.

Text Solution

Verified by Experts

1
arc `cos((2)/(pi) arc cos x)=arc sin ((2)/(pi) arc sin x) `
`cos^(-1)((2)/(pi) ((pi)/(2)-sin^(-1)x))=sin^(-1)((2)/(pi) sin^(-1)x)`
`cos^(-1)(1-(2)/(pi) sin^(-1)x)=sin^(-1)((2)/(pi) sin^(-1)x)`
Let `(2)/(pi) sin^(-1)x=alpha` were `alpha in [0,1]` think !
`implies cos^(-1)(1-alpha)=sin^(-1) alpha`
`implies sin^(-1) sqrt(2alpha-alpha^(2))=sin^(-1) alpha implies sqrt(2alpha-alpha^(2))=alphaimplies 2 alpha-alpha^(2)=alpha^(2)`
`implies 2 alpha=2alpha^(2)`
Hence `alpha` is either 0 or 1
If `alpha=0` then x=0
if `alpha=1` then x=1
hence sum of all possible value of x is 1
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise PHYSICS SECTION - 1 PART-A [SINGLE CORRECT CHOICE TYPE]|18 Videos
  • TEST PAPERS

    BANSAL|Exercise PHYSICS SECTION - 1 PART-B [MULTIPLE CORRECT CHOICE TYPE]|5 Videos
  • TEST PAPERS

    BANSAL|Exercise CHEMISTRY SECTION-2 Part-C ( Integer type )|10 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin [ arc cos (- 1/2)]

The sum of all possible values of x satisfying the equation sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2) is

Number of values of x satisfying the equation cos ( 3 arc cos ( x-1)) = 0 is equal to

Find the value of : arc sin (1/2) + arc cos (1/2)

int x^(2) "arc" cos x dx .

the value of arc cos sqrt((2)/(3))-arccos((sqrt(6)+1)/(2sqrt(3)))is

The sum of all values of theta in (0 , pi) satisfying sin^(2) 2 theta + cos^(4) 2 theta = 1 is:

Find the asymptotes of the following curves : y = 2x - arc cos . 1/x

The number of values of x in [-pi,pi] satisfying the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sin x is