Home
Class 12
MATHS
The value of Lim(ntooo) ((2x)/(pi)cot^(-...

The value of `Lim_(ntooo) ((2x)/(pi)cot^(-1)(nx)-x)` is/are

A

`1,xgt0`

B

`x,xlt0`

C

`-x,xgt0`

D

`-1,xlt0`

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(ntooo)Lim(2x)/(pi)((pi)/(2)-tan^(-1)nx)-x`
`underset(ntooo)Limx-(2x)/(pi)tan^(-1)nx-x`
`underset(ntooo)Lim-(2x)/(pi)tan^(-1)nx={{:(0,"if",x=0),(-x,"if",xgt0),(x,"if",xlt0):}`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 PART-C [INTEGER TYPE]|5 Videos
  • TEST PAPERS

    BANSAL|Exercise PHYSICS SECTION - 1 [PARAGRAPH TYPE]|4 Videos
  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 PART-A [SINGLE CORRECT CHOICE TYPE]|10 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(ntooo) (cos ((x)/(n))^(n) , is

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is

The value of lim_(x rarr oo)x^(2)ln(x cot^(-1)x) is

The value of lim_(x rarr oo)(|x^(2)|+x)log(x cot^(-1)x) is :

The value of int_(-(pi)/(2))^((pi)/(2))[cot^(-1)x]dx

The value of lim_(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

The value of lim_(x to 0) ((1)/(x) - cot x) equals

The value of lim_(x to 0) ((1)/(x^(2)) - cot x) equals