Home
Class 12
MATHS
Let g(x)=(2x-x^(2))^((1)/(log(10)(2x-x^(...

Let `g(x)=(2x-x^(2))^((1)/(log_(10)(2x-x^(2))))`. The value of x for which f' vanishes may be

A

1

B

`(1)/(2)`

C

`(3)/(2)`

D

3

Text Solution

Verified by Experts

The correct Answer is:
A

`g(x)=(2x-x^(2))^(log_((2x-x^(2))^(10)))=10`
`:.g(x)=10rArrg'(x)=0AAx in D_(g)`
`{:(2x-x^(2)gt0,and,2x-x^(2)!=1,),(x^(2)-2xlt0,,(x-1)!=0rArrx!=1, . . . . . (1)),(x(x-2)lt0,,,),(x in(0,2),,. . . . .(2),):}`
(1) and (2) `rArrx in(0,2)-{1}`.
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 PART-C [INTEGER TYPE]|5 Videos
  • TEST PAPERS

    BANSAL|Exercise PHYSICS SECTION - 1 [PARAGRAPH TYPE]|4 Videos
  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 PART-A [SINGLE CORRECT CHOICE TYPE]|10 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(log_(10)x^(2)) then the set of all values of x for which f(x) is real is

Let f(x) = sqrt(log_(10)x^(2)) .Find the set of all values of x for which f (x) is real.

For the function f(x)=x^(2)-6x+8, 2 le x le 4 , the value of x for which f'(x) vanishes is

If (log_(2)(4x^(2)-x-1))/(log_(2)(x^(2)+1))>1, then x may be

Let f(x)={x^3-x^2+10 x-5,xlt=1-2x+(log)_2(b^2-2),x >1 Find the values of b for which f(x) has the greatest value at x=1.

Let f(x) = 2x^(2) - log x , then

"Let "f(x)=x + (1)/(2x + (1)/(2x + (1)/(2x + .....oo))). Then the value of f(50)cdot f'(50) is -

Let f(x)= (2x)/(2x^2+5x+2) and g(x)=1/(x+1) . Find the set of real values of x for which f(x) gt g(x) .

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to