Home
Class 12
MATHS
Let f(x)=("cosec "x+cotx-1)/(1+cotx-"cos...

Let `f(x)=("cosec "x+cotx-1)/(1+cotx-"cosec "x)`. The Primitive of f(x) with respect to x is equal to

A

`ln("sin"(x)/(2))+C`

B

`2ln("cos"(x)/(2))+C`

C

`ln(1-sinx)+C`

D

`In(1-cosx)+C`

Text Solution

Verified by Experts

The correct Answer is:
A

`"f"("cosec "x+cotx-("cosec"^(2)x-cotx))/(1+cotx-"cosec "x)dx=f("cosec "x+cotx)dx` ltbr? `=ln("cosec "x-cotx)+ln sin x+C=ln(1-cosx)+C`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION - 2 PART A [PARAGRAPH TYPE]|6 Videos
  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION - 2 [MULTIPLE CORRECT CHOICE TYPE]|6 Videos
  • TEST PAPERS

    BANSAL|Exercise CHEMISTRY SECTION - 2 [MULTIPLE CORRECT CHOICE TYPE]|6 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

cotx+tanx=2"cosec "x

cot^(-1)("cosec x"+cotx)

int cotx cosec^2x dx

int(secx."cosec"x)/(2cotx-secx"cosec x")dx di equal to

inte^(x)(cotx-"cosec"^(2)x)dx=?

Let f(x)=(x-1)/(x+1) then f(1) is equal to

If cosec x =1+ cotx, then x=

lim_(xrarr0)("cosec"x-cotx)/(x) is equal to