Home
Class 12
MATHS
If f(x) is integrable over [1,2] then un...

If f(x) is integrable over [1,2] then `underset(1)overset(2)(f)f(x)dx` is equal to

A

`underset(nto oo)Lim(1)/(n)underset(r=1)overset(n)sumf((r)/(n))`

B

`underset(nto oo)Lim(1)/(2n)underset(r=n+1)overset(n)sumf((r)/(n))`

C

`underset(nto oo)Lim(1)/(n)underset(r=1)overset(n)sumf((r+n)/(n))`

D

`underset(nto oo)Lim(1)/(n)underset(r=1)overset(2n)sumf((r)/(n))`

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(nto oo)Lim(1)/(n)underset(r=n+1)overset(2n)sumf((r)/(n))underset(1)overset(2)(f)(x)dx`
`underset(nto oo)Lim(1)/(n)underset(r=1)overset(2n)sum"f"((r+n)/(n))=underset(0)overset(1)(f)f(1+x)dxunderset(1)overset(2)(f)f(t)dt=underset(1)overset(2)(f)f(x)dx`
`underset(nto oo)Lim(1)/(n)underset(r=1)overset(n)sumf((r)/(n))=underset(0)overset(1)(f)f(x)dx`
`underset(nto oo)Lim(1)/(n)underset(r=1)overset(n)sumf((r)/(n))=underset(0)overset(2)(f)f(x)dx`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION - 2 PART A [PARAGRAPH TYPE]|6 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

If f(x) is integrable over [1,2] then int_(1)^(2)f(x)dx is equal to

If f(x) in inegrable over [1,2] then int_(1)^(2) f(x) dx is equal to :

If f(x)={{:(x,xlt1),(x-1,xge1):} , then underset(0)overset(2)intx^(2)f(x) dx is equal to :

If f (x) is a function such that f(x+y)=f(x)+f(y) and f(1)=7" then "underset(r=1)overset(n)sum f(r) is equal to :

If f(x) satifies of conditiohns of Rolle's theorem in [1,2] and f(x) is continuous in [1,2] then :.int_(1)^(2)f'(x)dx is equal to

Let f(x) be a differentiable function satisfying the condition f((x)/(y)) = (f(x))/(f(y)) , where y != 0, f(y) != 0 for all x,y y in R and f'(1) = 2 The value of underset(-1)overset(1)(int) f(x) dx is

int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to