Home
Class 12
MATHS
ABCD एक समान्तर चतुर्भुज हैं और AC, BD इ...

ABCD एक समान्तर चतुर्भुज हैं और AC, BD इसके विकर्ण हैं|
(a) `vec(AB)` को `vec(AC)` और `vec(BD)` के रूप में व्यक्त करें| (b) `vec(AC)` को `vec(BD)` के रूप में व्यक्त करें|
साथ ही यह सिद्ध करें कि `vec(AC) + vec(BD) = 2vec(BC), vec(AC) - vec(BD) = 2vec(AB)`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

ABCD is a parallelogram and AC, BD are its diagonals. Show that : vec(AC)+vec(BD)=2vec(BC),vec(AC)-vec(BD)=2vec(AB) .

ABCD is a parallelogram and AC, BD are its diagonals. Show that : vec(AC)+vec(BD)=2vec(BC), vec(AC)-vec(BD)=2vec(AB) .

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

bar(AC) " and " bar(BD) are the diagonals of the parallelogram ABCD. Prove that, vec(AC)+vec(BD)=2vec(BC) " and " vec(AC)-vec(BD)=2vec(AB)