Home
Class 12
MATHS
If (xyz)^(x+y+z)=1 where xyz != 1 and lo...

If `(xyz)^(x+y+z)=1` where `xyz != 1 and log_3(xyz)=-1,` then `log_(xyz) (x^3+y^3+z^3)`equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If (xyz)^(x+y+z)=1 where xyz!=1 and log_(3)(xyz)=-1, then log_(xyy)(x^(3)+y^(3)+z^(3)) equals

if x+y+z=1 and xy+yz+zx=1/3 then find x:y:z

If x+Y+z=1, xy+yz+zx=-1 and xyz=-1, find the value of x^3+y^3+z^3 .

If x+y+z=19, xyz=216 and xy+yz+zx=114, then the value of sqrt(x^3 + y^3 + z^3 + xyz) is:

If x+y+z=1,xy+yz+zx=-1 and xyz=-1, find the value of x^(3)+y^(3)+z^(3)

If x+y+z=0 then x^3+y^3+z^3+3xyz equal to

If log_(xyz)x + log_(xyz)y + log_(xyz)z= log_(10)p , then p = ______.