Home
Class 11
PHYSICS
The area of the parallelogram whose side...

The area of the parallelogram whose sides are represented by the vector `hat(j)+3hat(k)` and `hat(i)+2hat(j)-hat(k)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area of parallelogram whose adjacent sides are represented by the vectors 3hat(i)+hat(j)-2hat(k) and hat(i)-2hat(j)-hat(k) .

Find the area of parallelogram whose adjacent sides are represented by the vectors 3hat(i)+hat(j)-2hat(k) and hat(i)-2hat(j)-hat(k) .

Find the area of parallelogram whose adjacent sides are represented by the vectors 3hat(i)+hat(j)-2hat(k) and hat(i)-2hat(j)-hat(k) .

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

Find the area of the parallelogram whose adjacent sides are represented by the vectors (3 hat (i)+hat(j)-2 hat(k)) and (hat (i)-3 hat(j)+4 hat (k)).

Find the area of a parallelogram whose adjacent sides are represented by the vectors 2 hat i-3 hat k and 4 hat j+2 hat k .

Find the area of a parallelogram whose adjacent sides are represented by the vectors 2hat i-3hat k and 4hat j+2hat k

Find the area of the parallelogram whose diagonals are represented by the vectors vec(d)_(1)=(2 hat(i) - hat(j)+ hat(k)) and vec(d)_(2) = (3 hat(i) + 4 hat(j) - hat(k)).

Two adjacent sides of a parallelogram are represented by the two vectors hat(i) + 2hat(j) + 3hat(k) and 3hat(i) - 2hat(j) + hat(k). What is the area of parallelogram?