Home
Class 12
MATHS
Find tan^(-1). (x)/(sqrt(a^(2) - x^(2)))...

Find `tan^(-1). (x)/(sqrt(a^(2) - x^(2)))` in terms of `sin^(-1)`, where `x in (0, a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

Simplify 2"tan"^(-1)x+"sin"^(-1)((2x)/(1+x^(2))) in terms of "tan"^(-1)x .

If y = tan^(-1) {(x)/(1 + sqrt(1 - x^(2)))} + sin { 2 tan^(-1) sqrt((1 - x)/(1 + x))}, "then" (dy)/(dx) =

Find (dy)/(dx) , when y="tan"^(-1)(x)/(1+sqrt(1-x^(2)))+sin(2 tan^(-1)sqrt((1-x)/(1+x)))

Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with respect to tan^(-1) ( 2 x sqrt( 1 - x^(2)))/(1 - 2 x ^(2)) at x = 0