Home
Class 12
MATHS
"If "y=(sinx)^(cosx)+(cosx)^(sinx)", pro...

`"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sinx)^(cosx) + (cos x)^sinx , then find dy/dx .

"If "y=x^(cos)+(cosx)^(x)", prove that "(dy)/(dx)=x^(cosx).{(cosx)/(x)-(sinx)logx}+(cosx)^(x)[(log cos x)-x tan x].

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.

If y=(sinx)^(cosx)+x^(sinx) find dy/dx.

If y=(1+sinx-cosx)/(1+sinx+cosx), " show that, " (dy)/(dx)=(1)/(1+cos x).

If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].

If y="tan"^(-1)((cosx-sinx)/(cosx+sinx)) , then (dy)/(dx)=

If y=tan^(-1)[(sinx+cosx)/(cosx-sinx)] then (dy)/(dx) is

If y=tan^(-1)[(sinx+cosx)/(cosx-sinx)] then (dy)/(dx) is

Find (dy)/(dx), y=(sinx)^(cosx)+(cosx)^(sinx)