Home
Class 12
MATHS
In the isosceles triangle ABC, |vec(AB)...

In the isosceles triangle `ABC, |vec(AB)| = |vec(BC)| = 8`,a point E divide AB internally in the ratio `1:3`, then the cosine of the angle between `vec(CE)` and `vec(CA)` is (where `|vec(CA)| = 12`)

Promotional Banner

Similar Questions

Explore conceptually related problems

In the isosceles triangle ABC,|vec AB|=|vec BC|=8, a point E divide AB internally in the ratio 1:3, then the cosine of the angle between vec CE and vec CA is (where |vec CA|=12 )

In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divides A B internally in the ratio 1:3, then find the angle between vec C Ea n d vec C A(w h e r e| vec C A|=12)dot

In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divides A B internally in the ratio 1:3, then find the angle between vec C Ea n d vec C A(w h e r e| vec C A|=12)dot

In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divides A B internally in the ratio 1:3, then find the angle between vec C Ea n d vec C A(w h e r e| vec C A|=12)dot

In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divides A B internally in the ratio 1:3, then find the angle between vec C Ea n d vec C A(w h e r e| vec C A|=12)dot

In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divides A B internally in the ratio 1:3, then find the angle between vec C Ea n d vec C A(w h e r e| vec C A|=12)dot

In triangle ABC, find vec(AB)+vec(BC)+vec(CA)

In a triangle ABC, if |vec(BC)|=8, |vec(CA)|=7, |vec(AB)|=10 , then the projection of the vec(AB) on vec(AC) is equal to :

If A, B and C are the vertices of a triangle ABC, then what is the value of vec(AB) + vec(BC) + vec(CA) ?