Home
Class 10
MATHS
Prove that sqrt[(1+sinA)/(1 - sinA)] = s...

Prove that `sqrt[(1+sinA)/(1 - sinA)] = secA + tanA`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: sqrt((1+sinA)/(1-sinA))=secA+tanA

Prove that sqrt((1+sinA)/(1-sinA))=(1+sinA)/cosA .

Prove that cosA/(1+sinA)+(1+sinA)/cosA=2secA .

Prove that sqrt((1+sinA)/(1-sinA))=tan(pi/4+A/2)

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. sqrt((1+sinA)/(1-sinA))=secA+tanA

Prove the following identities. where the angles involved are acute angles for which the expressions are defined. sqrt((1+sinA)/(1-sinA))=secA+tanA

Prove that secA(1-sinA)(secA+tanA)=1

Prove that: " "( tan A + sinA)/(tanA - sinA) = (sec A +1)/(secA -1)

Prove that: " "( tan A + sinA)/(tanA - sinA) = (sec A +1)/(secA -1)