Home
Class 11
MATHS
sum(j=1)^nsum(i=1)^n i=...

`sum_(j=1)^nsum_(i=1)^n i=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n 1

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

If sum_(r=1)^nt_r=sum_(k=1)^nsum_(j=1)^ksum_(i=1)^j2 , then sum_(r=1)^n1/t_r=

Minimize z=sum_(j=1)^(n)" "sum_(i=1)^(m)c_("ij ")x_("ij") Subject to : sum_(j=1)^(n)x_("ij")=a_(i),i=1,..........,m sum_(i=1)^(m)x_("ij")=b_(i),j=1,..........,n is a LPP with number of constraints

sum_(r=1)^nr^2-sum_(m=1)^nsum_(r=1)^mr is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to