Home
Class 12
MATHS
the function f(x)={sinx/x+cosx , x!=0 an...

the function `f(x)={sinx/x+cosx , x!=0` and `f(x)={k , x=0` is continuous at `x=0` then find the value of `k`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)={sinx/x +cosx , x!=0 and f(x) =k at x=0 is continuous at x=0 then find the value of k

the function f(x)={(sin x)/(x)+cos x,x!=0 and f(x)={k,x=0 is continuous at x=0 then find the value of k

The function f(x) {((sin x)/x + cos x, x ne 0), (k, x = 0):} is continuous at x = 0, then the value of k is

If the function f(x)=(sin 3x)/(x)" for "x ne 0 and f(0)=k/2 is continuous at x=0 then k=

if f(x)=(sin^(-1)x)/(x),x!=0 and f(x)=k,x=0 function continuous at x=0 then k==

The function f(x)={{:(sinx/x+cosx", if "xne0),(k", if "x=0):} is continuous at x = 0, then the value of 'k' is :

If the function f(x) = {((cosx)^(1/x), ",", x != 0),(k, ",", x = 0):} is continuous at x = 0, then the value of k is

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

If the function f(x) = {((sin 3x)/x, x ne 0),(k/x, x = 0):} is continuous at x = 0, then k =