Home
Class 12
MATHS
Find (dy)/(dx) , when x=a(theta+sintheta...

Find `(dy)/(dx)` , when `x=a(theta+sintheta)` and `y=a(1-costheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when x=a(theta+sintheta)a n dy=a(1-costheta)

Find (dy)/(dx) if x=a(theta-sintheta) and y=a(1-costheta) .

Find (dy)/(dx) if x=a(theta-sintheta) and y=a(1-costheta) .

Find (dy)/(dx) , if x=a(theta-sintheta) and y=a(1+cos theta)

If x and y are connected parametrically by the equations given, without eliminating the parameter, Find (dy)/(dx) . x=a(theta-sintheta), y=a(1+costheta)

Find (d^2y)/(dx^2) : x = a(theta - sintheta), y = a(1 - costheta) at theta = (pi)/2 .

Find (dy)/(dx) when x=a(theta-sintheta),y=b(1-costheta) .

If x=a(theta+sintheta) and y=a(1-costheta) , find dy//dx .

Find (dy)/(dx) , when x=e^(theta)(theta+1/theta) and y=e^(-theta)(theta-1/theta)

Find dy/dx if x=a(theta-sintheta) and y=a(1+costheta)