Home
Class 12
MATHS
The function f(x)=1+x(sinx)[cosx], 0ltxl...

The function `f(x)=1+x(sinx)[cosx], 0ltxlepi//2`, where `[.]` denotes greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

The range of the function f(x)=[sinx+cosx] (where [x] denotes the greatest integer function) is

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

If [2sinx]+[cosx]=-3 then the range of the function f(x)=sinx+sqrt3cosx in [0, 2pi] is, (where [.] denotes the greatest integer function)

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

Find the Range of function f(x) = [|sin x| + |cosx |] , where [.] denotes are greatest integer function , is :