Home
Class 8
MATHS
(2x)^(ln2)=(3y)^(ln3) 3^(lnx)=2^(lny)...

`(2x)^(ln2)=(3y)^(ln3)` `3^(lnx)=2^(lny)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (x_(0),y_(0)) be the solution of the following equations (2x)^(ln2)=(3y)^(ln3) and 3^(lnx)=2^(lny) then 2x_(0)=

Let (x_0, y_0) be the solution of the following equations In (2x)^(In2)=(3y)^(ln3) and 3^(lnx)=2^(lny) Then x_0 is

Let (x_(0),y_(0)) be the solution of the following equations: (2x)^(ln2)=(3y)^(ln3) and 3^(ln x)=2^(ln y) Then value of x_(0) is:

Let (x_(0),y_(0)) be the solution of the following equations In (2x)^(In2)=(3y)^(ln3) and 3^(ln x)=2^(ln y) Then x_(0) is

(2x) ^ (ln2) = (3y) ^ (ln3) 3 ^ (ln x) = 2 ^ (ln y)

If x,y(x!=1) satisfy both the equation 2^(lnx) = 3^(lny) and (ln^2 x) = (ln^3y). The value of the expression sqrt(lny)+3sqrt(lnx) can be expressed as log_b a (where a, b in N). Then find the smallest value of |a-b|.

int_(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

int_(2-ln3)^(3+ln3)((ln(4+x))/(ln(4+x)+ln(9-x)dx)

int_(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :