Home
Class 12
MATHS
(x^2+5)/(x^2+2)^2=1/(x^2+2)+k/(x^2+2)^2...

`(x^2+5)/(x^2+2)^2=1/(x^2+2)+k/(x^2+2)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of k, if (x^(2))/((x^(2)+2)^(2))=(1)/(x^(2)+2)+(k)/((x^(2)+2)^(2))

(2x^(2)-1)/((x^(2)+4)(x^(2)-5))

If (x^(2)+10)/((x^(2)+1)^(2))=(k)/(x^(2)+1)+(9)/((x^(2)+1)^(2)), then the value of "k" is

If int (dx)/((x^(2)+a^(2))^(2))=(1)/(ka^(2)){(x)/(x^(2)+a^(2))+(1)/(a) tan^(-1). (x)/(a)}+C . Then the value of k, is

If int (dx)/((x^(2)+a^(2))^(2))=(1)/(ka^(2)){(x)/(x^(2)+a^(2))+(1)/(a) tan^(-1). (x)/(a)}+C . Then the value of k, is

(x^((5)/(2))+2x^(-(1)/(2)))/(x^((5)/(2))-x^(-(1)/(2)))x5/2+2x-1/2 Differentiate 5/2-1/2 with respect to x .

int(2x^(2)+a^(2))/(x^(2)(x^(2)+a^(2)))dx=(k)/(x)+(1)/(a)Tan^(-1)((x)/(a))+c then k

If int (2x^(2)+a^(2))/(x^(2)(x^(2)+a^(2)))dx=(k)/(x)+(1)/(a)"Tan"^(-1)(x)/(a)+c Then k=