Home
Class 11
MATHS
(sin(A+3B)+sin(3A+B))/(sin2A+sin2B)=2cos...

`(sin(A+3B)+sin(3A+B))/(sin2A+sin2B)=2cos(A+B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(A+B+C)=cos A cos B cos C , then (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin 2B sin 2C)=

If cos(A+B+C)=cos A cos B cos C, then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin2sin2C)

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

If A and B are complementary angles, prove that : (sin A + sin B)/ (sin A - sin B) + (cos B - cos A)/ (cos B + cos A) = (2)/(2 sin^(2) A - 1)

Prove (i)sin(A+B)+sin(A-B)=2sin A cos B (ii) sin(A+B)-sin(A-B)=2cos A sin B

(sin^(2)A-sin^(2)B)/(sin A cos A-sin B cos B) is equal to (a) sin A cos A-sin B cos Btan(A-B)(b)tan(A+B)cot(A-B)(d)cot(A+B)

(cos A)/(sin B sin C)+(cos B)/(sin C sin A)+(cos C)/(sin A sin B)=2

Show that (1+sin A)/(cos A)+(cos B)/(1-sin B)=(2sin A-2sin B)/(sin(A-B)+cos A-cos B)

Prove the following identities : (sin(A+B) - 2 sin A + sin (A-B))/(cos(A+B)-2cos A +cos (A-B))=tan A

(sin ^(2) A - sin ^(2) B)/( sin A cos A - sin B cos B) is equal to