Home
Class 11
MATHS
cos^2theta+sin^2thetacos2beta=cos^2beta+...

`cos^2theta+sin^2thetacos2beta=cos^2beta+sin^2betacos2theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^2 theta + sin^2 theta cos 2 beta = cos^2 beta + sin^2 beta cos 2theta

Prove that: cos^(2)theta+sin^(2)theta cos2 beta=cos^(2)beta+sin^(2)beta cos2 theta

Prove that (1/(sec^2theta-cos^2theta)+1/(cosec^2-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta

Prove the following identity: (1/(sec^2theta-cos^2theta)+1/(cos e c^2theta-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)

Prove the following identity: (1/(sec^2theta-cos^2theta)+1/(cos e c^2theta-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)

Prove the following identities: 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0 sin^6theta+cos^6theta+3sin^2thetacos^2theta=1 (sin^8theta-cos^8theta)=(sin^2theta-cos^2theta)(1-2s in^2thetacos^2theta)

Prove the following identities: sin^8theta-cos^8theta=(sin^2theta-cos^2theta)(1-2sin^2thetacos^2theta)

Prove the following: sin^8theta-cos^8theta=(sin^2theta-cos^2theta)(1-2sin^2thetacos^2theta)

prove that- sin^2theta/cos^2theta+cos^2theta/sin^2theta=1/ (sin^2thetacos^2theta)-2

If sin^(-1)x=theta+betaa n dsin^(-1)y=theta-beta, then 1+x y is equal to sin^2theta+sin^2beta (b) sin^2theta+cos^2beta cos^2theta+cos^2theta (d) cos^2theta+sin^2beta