Home
Class 10
MATHS
lim(n rarr oo) (1+4+9+16+...+n^(2))/(4n^...

`lim_(n rarr oo) (1+4+9+16+...+n^(2))/(4n^(3)+1)=`_______.

A

`(1)/(12)`

B

`(1)/(24)`

C

`(1)/(8)`

D

`(1)/(16)`

Text Solution

Verified by Experts

The correct Answer is:
A

Write formula for sum of the squares of first n natural numbers, i.e., `(n(n+1)(2n+1))/(6)`
Divide the numerator and the denominator by `n^(3)`. Then substitute `(1)/(n) = 0, "as" n rarr oo, (1)/(n) = 0`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL-2|15 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application Level -3|15 Videos
  • LINEAR PROGRAMMING

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo) (n(1+4+9+16+......+n^(2)))/(n^(4)+8n^(3)) .

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) {(1) / (n ^ (3) +1) + (4) / (n ^ (3) +1) + (9) / (n ^ (3) +1) +. ........... + (n ^ (2)) / (n ^ (3) +1)}

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

lim_ (n rarr oo) [(1) / (n) + (n ^ (2)) / ((n + 1) ^ (3)) + (n ^ (2)) / ((n + 2) ^ (3)) + ...... + (1) / (8n)]