Home
Class 10
MATHS
lim(x rarr 3) (sqrt(5x+1)-sqrt(7x-5))/(s...

`lim_(x rarr 3) (sqrt(5x+1)-sqrt(7x-5))/(sqrt(7x+4)-sqrt(5x+10))=`_____.

A

0

B

`-(5)/(4)`

C

`(5)/(4)`

D

`oo`

Text Solution

Verified by Experts

The correct Answer is:
B

`underset(x rarr 3)("lim")(sqrt(5x+1)-sqrt(7x-5))/(sqrt(7x+4)-sqrt(5x+10))=(0)/(0)`
That is, indeterminate form.
Multiply both the numerator and the denominator with `(sqrt(5x+1)+sqrt( 7x-5))(sqrt(7x+4)+sqrt(5x+10)`
`rArr underset(x rarr 3)("lim")([5x+1-(7x-5)](sqrt7x+4)+sqrt(5x+10))/((7x+4-5x-10)(sqrt(5x+1)+sqrt(7x-5)))`
`rArr underset(x rarr 3)("lim")((-2x+6)(sqrt(7x+4)+sqrt(5x+10)))/((2x-6)(sqrt(5x+1)+sqrt(7x-5)))`
`=underset(x rarr 3)("lim")(-(sqrt(7x+4)+sqrt(5x+10)))/((sqrt(5x+1)+sqrt(7x-5)))`
`=(-(sqrt(25)+sqrt(25)))/((sqrt(16)+sqrt(16)))=(-10)/(8)=(-5)/(4)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL-2|15 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application Level -3|15 Videos
  • LINEAR PROGRAMMING

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 1) (sqrt(x+1)-sqrt(5x-3))/(sqrt(2x+3)-sqrt(4x+1))= _________.

lim_(x rarr oo)sqrt(3x)-sqrt(x-5)

lim_(x rarr 5) (sqrt(2x-3)-sqrt(3x-8))/(sqrt(2x-1)-sqrt(3x-6))= _______.

lim_(x rarr1)(13sqrt(x)-7sqrt(x))/(5sqrt(x)-3sqrt(x))

Evaluate: lim_(x rarr 0) (sqrt(5+x)-sqrt(5-x))/(sqrt(10+x)-sqrt(10-x)) .

"lim_(x rarr0)(sqrt(4+x)-sqrt(5))/(x-1)

lim_(xrarr+1) (sqrt(4+x)-sqrt(5))/(x-1)

lim_(x rarr0)(sqrt(4+x)-sqrt(5))/(x-1)

lim_(x rarr2)(5)/(sqrt(2)-sqrt(x))

lim_(x rarr oo)sqrt(x)(sqrt(x)-sqrt(x-a))