Home
Class 11
MATHS
The roots of the equation 4x^2-2sqrt(5)x...

The roots of the equation `4x^2-2sqrt(5)x+1=0,a r e` (a)`sin36^0,sin18^0` (b) `sin18^0,cos36^0` (c)`sin36^0,cos18^0` (d) `cos18^0,cos36^0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The product of the roots of the equation x|x| - 5x - 6=0 is equal to a)36 b)-36 c)-18 d)6

Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

Prove that: cos18^0-sin 18^0=sqrt(2)sin27^0

Prove that: cos18^0-sin 18^0=sqrt(2)sin27^0

Prove that: sin36^0=(sqrt(10-2sqrt(5)))/4 .

find the value of sin18^(0) and cos36^(@)

Prove that sin 18^@ and cos 36^@ are the roots of the equation : 4x^2-2 sqrt5 x+1=0 .

sin36^(@)+cos36^(@)=sqrt(2)cos9^(@)