Home
Class 12
MATHS
If (x)=|alpha+xtheta+xlambda+xbeta+xvarp...

If `(x)=|alpha+xtheta+xlambda+xbeta+xvarphi+xmu+xgamma+xpsi+x v+x|` show that `"Delta^"(x)=0a n d"Delta"(0)+S x ,w h e r eS` denotes he sum of all the cofactors of all elements in `"Delta"(0)a n d` dash denotes the derivative with respect of `xdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x)=|(alpha+x,theta+x,lambda+x),(beta+x,varphi+x,mu+x),(gamma+x,psi+x, v+x)| show that Delta^(x)=0a n d Delta(0)+S x ,where S denotes he sum of all the cofactors of all elements in Delta(0) and dash denotes the derivative with respect of xdot

If (x)=|a_1+x b_1+x c_1+x a_2+x b_2+x c_2+x a_3+x b_3+x c_3+x| , show that ^(x)=0 and that(x)=(0)+S x ,w h e r eS denotes the sum of all the cofactors of all the element in (0)dot

if Delta (x)= |{:(a_(1)+x,,b_(1)+x,,c_(1)+x),(a_(2)+x,,b_(2)+x,,c_(2)+x),(a_(3)+x,,b_(3)+x,,c_(3)+x):}| then show that Delta (x)=0 and that Delta (x)=Delta(0)+sx. where s denotes the sum of all the cofactors of all the elements in Delta (0)

Let Delta_0 = |(a_11, a_12, a_13), (a_21, a_22, a_23), (a_31, a_32, a_33)|, (where Delta_0 !=0) and let Delta_1 denote the determinant formed by the cofactors of elements of Delta_0 and Delta_2 denote the determinant formed by the cofactors at Delta_1 and so on Delta_n denotes the determinant formed by the cofactors at Delta_(n-1) then the determinant value of Delta_n is (A) (Delta_0)^(2n) (B) (Delta_0)^(2^n) (C) (Delta_0)^2 (D) (Delta_0)^(n^2)

If f(x)=x^n w h e r en in R , then differentiation of x^n with respect to xsin x^(n-1)dot

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

The angles of a triangle are (x-40)^0,\ (x-20)^0\ a n d\ (1/2x-10)^0dot find the value of xdot