Home
Class 13
MATHS
" If "I=[[1,0],[0,1]]" so "I^(4)=...

" If "I=[[1,0],[0,1]]" so "I^(4)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=[[1,0],[0,1]] , then I^4=

If A= [[6,2],[-1,3]] and I= [[1,0],[0,1]] show that (A-4I) (A-5I)=0

If A= [[5,2],[-1,2]] and I= [[1,0],[0,1]] show that (A-3I) (A-4I)=0

If A= [[7,2],[-1,4]] and I= [[1,0],[0,1]] show that (A-5I) (A-6I)=0

If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] prove that (2I+3E)^3=8I+36E

If A=[[3,-2],[4,-2]] and I=[[1,0],[0,1]] , find k so that A^2=kA-2I

If A=[[2,4],[3,13]]"and I"=[[1,0],[0,1]]"find" A-alpha I,alpha in R.

Verify that the matrix equation A^2 - 4a +3I =0 is satisfied by the matrix A = [[2,-1],[-1,2]] , where I = [[1,0],[0,1]] and 0= [[0,0],[0,0]] ,

If A A=[[3,-2],[ 4,-2]] and I=[[1, 0],[ 0, 1]] , find k so that A^2=k A-2I .

If A= [[1 , 0],[ − 1, 7]] and I=[[1, 0],[ 0 ,1]] , then find k so that A^2=8A+k I