f(x)=|x|

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)-|f(x)| (d) none of these

Let f(x)=|x-1|* Then (a) f(x^(2))=(f(x))^(2) (b) f(x+y)=f(x)+f(y)(c)f(|x|)-|f(x)| (d) none of these

If f(x)=-x|x| , then f^(-1)(x) is :

If f(x)=-x|x| ,then f^(-1)(x) is :

Which of the following function/functions has/have point of inflection? f(x)=x^(6/7) (b) f(x)=x^6 f(x)=cosx+2x (d) f(x)=x|x|

Which of the following function/functions has/have point of inflection? f(x)=x^(6/7) (b) f(x)=x^6 f(x)=cosx+2x (d) f(x)=x|x|

Which of the following function/functions has/have point of inflection? f(x)=x^(6/7) (b) f(x)=x^6 f(x)=cosx+2x (d) f(x)=x|x|