Home
Class 12
MATHS
Let a function f:(0,infty)to[0,infty) be...

Let a function `f:(0,infty)to[0,infty)` be defined by `f(x)=abs(1-1/x)`. Then f is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is

If the function f:[1, infty) rarr [1, infty) is defined by f(x)=2^(x(x-1)) , then find f^(-1)(x) .

If the function f:[1, infty) rarr [1, infty) is defined by f(x)=2^(x(x-1)) , then find f^(-1)(x) .

If the function f:[1, infty) rarr [1, infty) is defined by f(x)=2^(x(x-1)) , then find f^(-1)(x)

If f:[0,infty) to R defined by f(x) = x^(2) , then f is

If f:[1,infty) to [1, infty) is defined by f(x) =2^(x(x+1)) then f^(-1)(x) =

If f:[1,infty) to [2, infty) , defined by f(x) = x+1/x , then find f^(-1)(x) .

If f:[1,infty)rarr[2,infty) is defined as f(x)=x+(1/x) then find f^(-1)(x)