Home
Class 12
MATHS
Evaluate : int (1)/(sqrt(1-e^(2x))) " dx...

Evaluate : `int (1)/(sqrt(1-e^(2x))) " dx "`

A

`log |e^(-x) +sqrt(e^(-x)-1)|+c`

B

`-log |e^(-x) +sqrt(e^(-2x)+1)|+c`

C

`log |e^(-x) +sqrt(e^(-2x)-1)|+c`

D

`-log |e^(-x) +sqrt(e^(-2x)-1)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{1}{\sqrt{1 - e^{2x}}} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral We start by factoring out \( e^{2x} \) from the square root in the denominator: \[ I = \int \frac{1}{\sqrt{1 - e^{2x}}} \, dx = \int \frac{1}{\sqrt{e^{2x}(e^{-2x} - 1)}} \, dx. \] ### Step 2: Simplify the Integral This can be simplified further: \[ I = \int \frac{1}{e^x \sqrt{e^{-2x} - 1}} \, dx = \int \frac{e^{-x}}{\sqrt{e^{-2x} - 1}} \, dx. \] ### Step 3: Substitution Let \( t = e^{-x} \). Then, \( dt = -e^{-x} \, dx \) or \( dx = -\frac{dt}{t} \). Substituting these into the integral gives: \[ I = \int \frac{t}{\sqrt{t^2 - 1}} \left(-\frac{dt}{t}\right) = -\int \frac{1}{\sqrt{t^2 - 1}} \, dt. \] ### Step 4: Integrate The integral \( \int \frac{1}{\sqrt{t^2 - 1}} \, dt \) is a standard integral, which results in: \[ -\int \frac{1}{\sqrt{t^2 - 1}} \, dt = -\ln |t + \sqrt{t^2 - 1}| + C. \] ### Step 5: Substitute Back Now, substituting back \( t = e^{-x} \): \[ I = -\ln |e^{-x} + \sqrt{(e^{-x})^2 - 1}| + C. \] ### Step 6: Simplify the Expression This can be simplified further: \[ I = -\ln \left( e^{-x} + \sqrt{e^{-2x} - 1} \right) + C. \] ### Final Result Thus, the final result of the integral is: \[ I = -\ln \left( e^{-x} + \sqrt{e^{-2x} - 1} \right) + C. \]

To evaluate the integral \[ I = \int \frac{1}{\sqrt{1 - e^{2x}}} \, dx, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(e^(x))/(sqrt(1-e^(2x)))dx

Evaluate: int(dx)/(sqrt(1-x^(2)))

Knowledge Check

  • int(dx)/(sqrt(1-e^(2x)))=?

    A
    `log |e^(x)+sqrt(e^(2x)-1)|+C`
    B
    `log |e^(-x)+sqrt(e^(-2x)-1)|+C`
    C
    `-log |e^(-x)+sqrt(e^(-2x)-1)|+C`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int e^(x)sqrt(e^(2x)+1)dx

    int(dx)/(sqrt(e^(2x)-1))=

    int(e^(2x))/(sqrt(1-e^(2x)))dx

    Evaluate: int(1+x^(2))/(sqrt(1-x^(2)))dx

    Evaluate: int(x+1)sqrt(1-x-x^(2))dx

    Evaluate int dx/(sqrt(2x+1)

    Evaluate int(dx)/(sqrt(1+e^(x)+e^(2x)))