Home
Class 12
MATHS
Evaluate : int(1)/(x^(2)). log x dx...

Evaluate : `int(1)/(x^(2)). log x dx`

A

`-(1/x)logx-(3/x)+C`

B

`-(1/x)log-(1/x)+C`

C

`(1/x)log-(1/x)+C`

D

`-(1/(2x))log-(1/x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{x^2} \log x \, dx \), we will use integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Let: \[ u = \log x \quad \text{and} \quad dv = \frac{1}{x^2} \, dx \] 2. **Differentiate \( u \) and integrate \( dv \)**: Now we need to find \( du \) and \( v \): \[ du = \frac{1}{x} \, dx \quad \text{and} \quad v = \int \frac{1}{x^2} \, dx = -\frac{1}{x} \] 3. **Apply the integration by parts formula**: Substitute \( u \), \( du \), \( v \), and \( dv \) into the integration by parts formula: \[ \int \frac{1}{x^2} \log x \, dx = uv - \int v \, du \] This gives us: \[ = \log x \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{x}\right) \, dx \] Simplifying this: \[ = -\frac{\log x}{x} + \int \frac{1}{x^2} \, dx \] 4. **Evaluate the remaining integral**: Now we need to evaluate \( \int \frac{1}{x^2} \, dx \): \[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \] 5. **Combine the results**: Substitute back into our expression: \[ = -\frac{\log x}{x} - \frac{1}{x} + C \] where \( C \) is the constant of integration. 6. **Final result**: Thus, the final answer is: \[ \int \frac{1}{x^2} \log x \, dx = -\frac{\log x + 1}{x} + C \]

To evaluate the integral \( \int \frac{1}{x^2} \log x \, dx \), we will use integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int _(1) ^(3) x ^(2).log x dx

int_(1)^(2)x log x dx =

Evaluate: int(log x)/(x^(2))dx

Evaluate: int(1)/(x log x(2+log x)dx)

Evaluate: int(1)/(x log x(2+log x))dx

Evaluate: int log(1+x^(2))dx

Evaluate: int(log(1-x))/(x^(2))dx

Evaluate: int(x+1)/(x(x+log x))dx

Evaluate :int(1)/(x+x log x)dx

Evaluate: int(log x)^(2)dx