Home
Class 12
MATHS
Evaluate : int (3x+1)/(2x^(2)-2x+3)dx...

Evaluate : `int (3x+1)/(2x^(2)-2x+3)dx`

A

`3/4 log | 2x^(2) -2x+3|+(sqrt(5))/(2) tan^(-1)((2x-1)/(sqrt(5)))+c`

B

`3/4 log | 5x^(2) -2x+3|+(sqrt(5))/(2) tan^(-1)((2x-1)/(sqrt(5)))+c`

C

`3/4 log | 2x^(2) -2x+7|+(sqrt(5))/(2) tan^(-1)((2x-1)/(sqrt(5)))+c`

D

`-3/4 log | 2x^(2) -2x+3|+(sqrt(5))/(2) tan^(-1)((2x-1)/(sqrt(5)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{3x + 1}{2x^2 - 2x + 3} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{3x + 1}{2x^2 - 2x + 3} \, dx \] ### Step 2: Perform Polynomial Long Division (if necessary) In this case, the degree of the numerator (1) is less than the degree of the denominator (2), so we can proceed directly without long division. ### Step 3: Use Partial Fraction Decomposition Since the denominator \( 2x^2 - 2x + 3 \) does not factor nicely (its discriminant is negative), we can express the numerator in terms of the derivative of the denominator: \[ 3x + 1 = A(4x - 2) + B \] where \( A \) and \( B \) are constants to be determined. ### Step 4: Differentiate the Denominator The derivative of the denominator \( 2x^2 - 2x + 3 \) is: \[ \frac{d}{dx}(2x^2 - 2x + 3) = 4x - 2 \] ### Step 5: Set Up the Equation Now, we can equate coefficients: \[ 3x + 1 = A(4x - 2) + B \] Expanding this gives: \[ 3x + 1 = 4Ax - 2A + B \] ### Step 6: Compare Coefficients From the equation \( 3x + 1 = (4A)x + (-2A + B) \), we can set up the following system: 1. \( 4A = 3 \) 2. \( -2A + B = 1 \) ### Step 7: Solve for A and B From the first equation, we find: \[ A = \frac{3}{4} \] Substituting \( A \) into the second equation: \[ -2\left(\frac{3}{4}\right) + B = 1 \implies -\frac{3}{2} + B = 1 \implies B = 1 + \frac{3}{2} = \frac{5}{2} \] ### Step 8: Substitute Back into the Integral Now we can rewrite the integral: \[ I = \int \left( \frac{3}{4} \cdot \frac{4x - 2}{2x^2 - 2x + 3} + \frac{5}{2} \cdot \frac{1}{2x^2 - 2x + 3} \right) \, dx \] This can be split into two separate integrals: \[ I = \frac{3}{4} \int \frac{4x - 2}{2x^2 - 2x + 3} \, dx + \frac{5}{2} \int \frac{1}{2x^2 - 2x + 3} \, dx \] ### Step 9: Solve the First Integral For the first integral, we can use substitution: Let \( t = 2x^2 - 2x + 3 \), then \( dt = (4x - 2) \, dx \). Thus, we have: \[ \frac{3}{4} \int \frac{dt}{t} = \frac{3}{4} \ln |t| + C_1 = \frac{3}{4} \ln |2x^2 - 2x + 3| + C_1 \] ### Step 10: Solve the Second Integral For the second integral, we complete the square in the denominator: \[ 2x^2 - 2x + 3 = 2\left(x^2 - x + \frac{3}{2}\right) = 2\left((x - \frac{1}{2})^2 + \frac{5}{4}\right) \] Thus, we have: \[ \int \frac{1}{2\left((x - \frac{1}{2})^2 + \frac{5}{4}\right)} \, dx = \frac{1}{\sqrt{5}} \tan^{-1}\left(\frac{2x - 1}{\sqrt{5}}\right) + C_2 \] ### Step 11: Combine Results Putting it all together, we have: \[ I = \frac{3}{4} \ln |2x^2 - 2x + 3| + \frac{5}{2\sqrt{5}} \tan^{-1}\left(\frac{2x - 1}{\sqrt{5}}\right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{3x + 1}{2x^2 - 2x + 3} \, dx = \frac{3}{4} \ln |2x^2 - 2x + 3| + \frac{5}{2\sqrt{5}} \tan^{-1}\left(\frac{2x - 1}{\sqrt{5}}\right) + C \]

To evaluate the integral \( \int \frac{3x + 1}{2x^2 - 2x + 3} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{3x + 1}{2x^2 - 2x + 3} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(3x)/(1+2x^4)dx

Evaluate: int(3x-1)/((x+2)^(2))dx

Evaluate int (3x-1)/((x-2)^(2))dx

Evaluate: int(3-4x)/(2x^(2)-3x+1)dx

evaluate int(3x-1)/(x^(2)-1)dx

Evaluate : int(x^(2)+3x-1)/(2x)dx

Evaluate: int(3x-1)/sqrt (3x^2-2x+7)dx

Evaluate int(1)/(sqrt(x^(2)-2x+3))dx

int(3x+1)/(2x^(2)+x-1)dx

Evaluate: int(x+1)sqrt(2x^(2)+3)dx