Home
Class 12
MATHS
Evaluate : int(0)^(pi//2) sin x dx...

Evaluate : `int_(0)^(pi//2) sin x dx `

Text Solution

AI Generated Solution

To evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \sin x \, dx \), we will follow these steps: ### Step 1: Set up the integral Let \( I = \int_{0}^{\frac{\pi}{2}} \sin x \, dx \). ### Step 2: Find the antiderivative of \( \sin x \) The integral of \( \sin x \) is known to be: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(pi//2) sin^(3) c cos x dx

int_(0)^(pi//2)sin x.sin 2x dx=

int_(0)^(pi) [2sin x]dx=

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx

Evaluate : int_(-pi//2)^(pi//2) |sin x|dx

Evaluate int_0^(pi/2) sin^7x dx

Evaluate : int_( 0 )^( 2pi ) Sin^2x dx

Evaluate : int_(0)^((pi)/(2)) sin^(2) x dx .

Evaluate : I = int_(0)^(2 pi)(sin x)dx =

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.