Home
Class 12
MATHS
Evaluate : int(0)^(9) (1)/(1+sqrt(x))dx...

Evaluate : `int_(0)^(9) (1)/(1+sqrt(x))dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{9} \frac{1}{1+\sqrt{x}} \, dx \), we will use a substitution method. ### Step 1: Substitution Let \( x = t^2 \). Then, we differentiate to find \( dx \): \[ dx = 2t \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(9)(dx)/(1+sqrt(x))

Evaluate: int_(0)^(1)(1)/(1+x+sqrt(x))dx

int_(1)^(9)(x+1)/(sqrt(x))dx

Evaluate :int_(0)^(1)(1)/(sqrt(2x+3))dx

int_(4)^(9)(x-1)/(1+sqrt(x))dx=

" 9.Evaluate "int_(0)^(1)(1)/(sqrt(3-2x))dx

" 1."int_(4)^(9)(1)/(sqrt(x))dx

Evaluate : int_(0)^(1) (-1)/(sqrt(1-x^(2)) )dx

Evaluate :int_(4)^(9)(1)/(sqrt(x))dx

Evaluate: int_(0)^(4)(1)/(x+sqrt(x))dx( ii) int_(0)^(1)(2x)/(5x^(2)+1)dx