Home
Class 12
MATHS
Prove that: int(0)^(pi//2) log (sin x) d...

Prove that: `int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2`

Text Solution

AI Generated Solution

To prove that \[ \int_{0}^{\frac{\pi}{2}} \log(\sin x) \, dx = \int_{0}^{\frac{\pi}{2}} \log(\cos x) \, dx = -\frac{\pi}{2} \log 2, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^(pi//2)log (sec x) dx=

int_(0)^(pi//2) log (tan x ) dx=

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_(0)^((pi)/(2))log(sin2x)dx

int_(0)^(pi) x log sinx\ dx

int_(0)^( pi)log(1+cos x)dx

int_(0)^( pi)cos2x*log(sin x)dx