Home
Class 12
MATHS
Evaluate : int(0)^(pi) |cos x| dx...

Evaluate : `int_(0)^(pi) |cos x| dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int_{0}^{\pi} |\cos x| \, dx \), we can follow these steps: ### Step 1: Understand the behavior of \( \cos x \) The function \( \cos x \) is positive on the interval \( [0, \frac{\pi}{2}] \) and negative on the interval \( [\frac{\pi}{2}, \pi] \). Therefore, we can express \( |\cos x| \) as: \[ |\cos x| = \begin{cases} \cos x & \text{for } 0 \leq x \leq \frac{\pi}{2} \\ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2 pi)|cos x|dx

int_(0)^( pi)|cos x|dx

int_(0)^( pi)|cos x|dx

Evaluate int_(0)^(4pi)|cos x| dx .

int_(0)^( pi)|cos x|dx=2

Evaluate : int_(0)^(pi) cos^(2)x.dx

evaluate int_(0)^(pi/2)|cos x|dx

int_(0)^( pi)|cos x|^(3)dx

int_(0)^( pi)[cos x]dx