Home
Class 12
MATHS
int cot^(3) x. cosec^(2) x dx...

`int cot^(3) x. cosec^(2) x dx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cot^3 x \csc^2 x \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \cot x \). Then, we need to find \( dt \): \[ \frac{dt}{dx} = -\csc^2 x \implies dt = -\csc^2 x \, dx \] From this, we can express \( dx \): \[ dx = -\frac{dt}{\csc^2 x} \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral in terms of \( t \): \[ \int \cot^3 x \csc^2 x \, dx = \int t^3 (-dt) = -\int t^3 \, dt \] ### Step 3: Integrate Now we can integrate: \[ -\int t^3 \, dt = -\left(\frac{t^4}{4}\right) + C = -\frac{t^4}{4} + C \] ### Step 4: Substitute Back Now we substitute back \( t = \cot x \): \[ -\frac{(\cot x)^4}{4} + C \] ### Final Answer Thus, the final result of the integral is: \[ -\frac{\cot^4 x}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sec^(2) x cosec^(2) x dx

Evaluate : int cot^(3)x cosec^(4)x dx

Evaluate: int cot^(3)x csc^(2)xdx

int cot^6x cosec^2xdx

int sec^(4)x cosec^(2)x dx is equal to

int e^cot x cosec^2xdx

int (sec^(2)x)/(cosec^(2)x) dx

Evaluate: int cot^(n)x csc^(2)xdx,n!=-1

int cotx cosec^2x dx