Home
Class 12
MATHS
int(cos^(2) (log .x))/(x)dx...

`int(cos^(2) (log .x))/(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos^2(\log x)}{x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, the differential \( dx \) can be expressed in terms of \( dt \): \[ dx = e^t \, dt = x \, dt \] Thus, we can rewrite the integral as: \[ \int \frac{\cos^2(t)}{e^t} \, e^t \, dt = \int \cos^2(t) \, dt \] ### Step 2: Use the Cosine Double Angle Identity We know from trigonometric identities that: \[ \cos^2(t) = \frac{1 + \cos(2t)}{2} \] Substituting this into the integral gives: \[ \int \cos^2(t) \, dt = \int \frac{1 + \cos(2t)}{2} \, dt \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \int \frac{1 + \cos(2t)}{2} \, dt = \frac{1}{2} \int 1 \, dt + \frac{1}{2} \int \cos(2t) \, dt \] ### Step 4: Integrate Each Part Now, we integrate each part: 1. The integral of \( 1 \) is: \[ \int 1 \, dt = t \] 2. The integral of \( \cos(2t) \) is: \[ \int \cos(2t) \, dt = \frac{\sin(2t)}{2} \] Putting it all together, we have: \[ \frac{1}{2} t + \frac{1}{2} \cdot \frac{\sin(2t)}{2} + C = \frac{1}{2} t + \frac{\sin(2t)}{4} + C \] ### Step 5: Substitute Back for \( t \) Since we let \( t = \log x \), we substitute back: \[ \frac{1}{2} \log x + \frac{\sin(2 \log x)}{4} + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int \frac{\cos^2(\log x)}{x} \, dx = \frac{1}{2} \log x + \frac{\sin(2 \log x)}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(cos(a+b log x))/(x)dx

int_(1)^(2)(log x)/(x)dx=

int(1)/(x cos^(2)(1+log x))dx

int_(1)^(3)(cos(log x))/(x)dx

int cos(2log x)dx

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

int x^(2)(log x)^(2)dx

Evaluate: (i) int(1)/(x log x log(log x)dx) (ii) int(cos ec^(2)x)/(1+cot x)dx